|
Search the dblp DataBase
Charles H. C. Little:
[Publications]
[Author Rank by year]
[Co-authors]
[Prefers]
[Cites]
[Cited by]
Publications of Author
- Mark N. Ellingham, Derek A. Holton, Charles H. C. Little
Cycles through ten vertices in 3-connected cubic graphs. [Citation Graph (0, 0)][DBLP] Combinatorica, 1984, v:4, n:4, pp:265-273 [Journal]
- Derek A. Holton, Charles H. C. Little
Regular odd rings and non-planar graphs. [Citation Graph (0, 0)][DBLP] Combinatorica, 1982, v:2, n:2, pp:149-152 [Journal]
- Feng Ming Dong, Kee L. Teo, Charles H. C. Little, Michael D. Hendy, Khee Meng Koh
Chromatically Unique Multibridge Graphs. [Citation Graph (0, 0)][DBLP] Electr. J. Comb., 2004, v:11, n:1, pp:- [Journal]
- Ilse Fischer, Charles H. C. Little
Even Circuits of Prescribed Clockwise Parity. [Citation Graph (0, 0)][DBLP] Electr. J. Comb., 2003, v:10, n:, pp:- [Journal]
- Feng Ming Dong, Michael D. Hendy, Kee L. Teo, Charles H. C. Little
The vertex-cover polynomial of a graph. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2002, v:250, n:1-3, pp:71-78 [Journal]
- Feng Ming Dong, Khee Meng Koh, Kee L. Teo, Charles H. C. Little, Michael D. Hendy
Chromatically unique bipartite graphs with low 3-independent partition numbers. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2000, v:224, n:1-3, pp:107-124 [Journal]
- Feng Ming Dong, Khee Meng Koh, Kee L. Teo, Charles H. C. Little, Michael D. Hendy
An attempt to classify bipartite graphs by chromatic polynomials. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2000, v:222, n:1-3, pp:73-88 [Journal]
- Feng Ming Dong, Kee L. Teo, Charles H. C. Little, Michael D. Hendy
Chromaticity of some families of dense graphs. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2002, v:258, n:1-3, pp:303-321 [Journal]
- Charles H. C. Little, Franz Rendl, Ilse Fischer
Towards a characterisation of Pfaffian near bipartite graphs. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2002, v:244, n:1-3, pp:279-297 [Journal]
- Lowell W. Beineke, Charles H. C. Little
Cycles in bipartite tournaments. [Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 1982, v:32, n:2, pp:140-145 [Journal]
- Ilse Fischer, Charles H. C. Little
A Characterisation of Pfaffian Near Bipartite Graphs. [Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 2001, v:82, n:2, pp:175-222 [Journal]
- Charles H. C. Little
Cubic combinatorial maps. [Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 1988, v:44, n:1, pp:44-63 [Journal]
- Charles H. C. Little, Derek A. Holton
No graph has a maximal 3-ring of bonds. [Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 1985, v:38, n:2, pp:139-142 [Journal]
- Serguei Norine, Charles H. C. Little, Kee L. Teo
A new proof of a characterisation of Pfaffian bipartite graphs. [Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 2004, v:91, n:1, pp:123-126 [Journal]
- Andrew Vince, Charles H. C. Little
Discrete Jordan Curve Theorems. [Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 1989, v:47, n:3, pp:251-261 [Journal]
- Charles H. C. Little
A characterization of planar cubic graphs. [Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 1980, v:29, n:2, pp:185-194 [Journal]
- Hong Wang, Charles H. C. Little, Kee L. Teo
Partition of a directed bipartite graph into two directed cycles. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1996, v:160, n:1-3, pp:283-289 [Journal]
Even Bonds of Prescribed Directed Parity. [Citation Graph (, )][DBLP]
Search in 0.004secs, Finished in 0.004secs
|