Search the dblp DataBase
Michael J. Kearns :
[Publications ]
[Author Rank by year ]
[Co-authors ]
[Prefers ]
[Cites ]
[Cited by ]
Publications of Author
David Haussler , H. Sebastian Seung , Michael J. Kearns , Naftali Tishby Rigorous Learning Curve Bounds from Statistical Mechanics. [Citation Graph (1, 0)][DBLP ] COLT, 1994, pp:76-87 [Conf ] Henry A. Kautz , Michael J. Kearns , Bart Selman Horn Approximations of Empirical Data. [Citation Graph (1, 0)][DBLP ] Artif. Intell., 1995, v:74, n:1, pp:129-145 [Journal ] Charles Lee Isbell Jr. , Michael J. Kearns , David P. Kormann , Satinder P. Singh , Peter Stone Cobot in LambdaMOO: A Social Statistics Agent. [Citation Graph (0, 0)][DBLP ] AAAI/IAAI, 2000, pp:36-41 [Conf ] Henry A. Kautz , Michael J. Kearns , Bart Selman Reasoning With Characteristic Models. [Citation Graph (0, 0)][DBLP ] AAAI, 1993, pp:34-39 [Conf ] Michael J. Kearns Oblivious PAC Learning of Concept Hierarchies. [Citation Graph (0, 0)][DBLP ] AAAI, 1992, pp:215-222 [Conf ] Michael J. Kearns Boosting Theory Towards Practice: Recent Developments in Decision Tree Induction and the Weak Learning Framework. [Citation Graph (0, 0)][DBLP ] AAAI/IAAI, Vol. 2, 1996, pp:1337-1339 [Conf ] Michael J. Kearns , Charles Lee Isbell Jr. , Satinder P. Singh , Diane J. Litman , Jessica Howe CobotDS: A Spoken Dialogue System for Chat. [Citation Graph (0, 0)][DBLP ] AAAI/IAAI, 2002, pp:425-430 [Conf ] Satinder P. Singh , Michael J. Kearns , Diane J. Litman , Marilyn A. Walker Empirical Evaluation of a Reinforcement Learning Spoken Dialogue System. [Citation Graph (0, 0)][DBLP ] AAAI/IAAI, 2000, pp:645-651 [Conf ] Charles Lee Isbell Jr. , Christian R. Shelton , Michael J. Kearns , Satinder P. Singh , Peter Stone A social reinforcement learning agent. [Citation Graph (0, 0)][DBLP ] Agents, 2001, pp:377-384 [Conf ] Peter Stone , Michael L. Littman , Satinder P. Singh , Michael J. Kearns ATTac-2000: an adaptive autonomous bidding agent. [Citation Graph (0, 0)][DBLP ] Agents, 2001, pp:238-245 [Conf ] Eyal Even-Dar , Michael Kearns , Jennifer Wortman Risk-Sensitive Online Learning. [Citation Graph (0, 0)][DBLP ] ALT, 2006, pp:199-213 [Conf ] Andrzej Ehrenfeucht , David Haussler , Michael J. Kearns , Leslie G. Valiant A General Lower Bound on the Number of Examples Needed for Learning. [Citation Graph (0, 0)][DBLP ] COLT, 1988, pp:139-154 [Conf ] Sally A. Goldman , Michael J. Kearns On the Complexity of Teaching. [Citation Graph (0, 0)][DBLP ] COLT, 1991, pp:303-314 [Conf ] Sally A. Goldman , Michael J. Kearns , Robert E. Schapire On the Sample Complexity of Weak Learning. [Citation Graph (0, 0)][DBLP ] COLT, 1990, pp:217-231 [Conf ] Sally A. Goldman , Michael J. Kearns , Robert E. Schapire Exact Identification of Circuits Using Fixed Points of Amplification Functions (Abstract). [Citation Graph (0, 0)][DBLP ] COLT, 1990, pp:388- [Conf ] David Haussler , Michael J. Kearns , Nick Littlestone , Manfred K. Warmuth Equivalence of Models for Polynomial Learnability. [Citation Graph (0, 0)][DBLP ] COLT, 1988, pp:42-55 [Conf ] David Haussler , Michael J. Kearns , Robert E. Schapire Bounds on the Sample Complexity of Bayesian Learning Using Information Theory and the VC Dimension. [Citation Graph (0, 0)][DBLP ] COLT, 1991, pp:61-74 [Conf ] Sham M. Kakade , Michael J. Kearns Trading in Markovian Price Models. [Citation Graph (0, 0)][DBLP ] COLT, 2005, pp:606-620 [Conf ] Sham Kakade , Michael J. Kearns , Luis E. Ortiz Graphical Economics. [Citation Graph (0, 0)][DBLP ] COLT, 2004, pp:17-32 [Conf ] Michael J. Kearns , Yishay Mansour , Andrew Y. Ng , Dana Ron An Experimental and Theoretical Comparison of Model Selection Methods. [Citation Graph (0, 0)][DBLP ] COLT, 1995, pp:21-30 [Conf ] Michael J. Kearns , Leonard Pitt A Polynomial-Time Algorithm for Learning k- Variable Pattern Languages from Examples. [Citation Graph (0, 0)][DBLP ] COLT, 1989, pp:57-71 [Conf ] Michael J. Kearns , Dana Ron Algorithmic Stability and Sanity-Check Bounds for Leave-one-Out Cross-Validation. [Citation Graph (0, 0)][DBLP ] COLT, 1997, pp:152-162 [Conf ] Michael J. Kearns , Dana Ron Testing Problems with Sub-Learning Sample Complexity. [Citation Graph (0, 0)][DBLP ] COLT, 1998, pp:268-279 [Conf ] Michael J. Kearns , Satinder P. Singh Bias-Variance Error Bounds for Temporal Difference Updates. [Citation Graph (0, 0)][DBLP ] COLT, 2000, pp:142-147 [Conf ] Michael J. Kearns , Robert E. Schapire Efficient Distribution-Free Learning of Probabilistic Concepts (Abstract). [Citation Graph (0, 0)][DBLP ] COLT, 1990, pp:389- [Conf ] Michael J. Kearns , H. Sebastian Seung Learning from a Population of Hypotheses. [Citation Graph (0, 0)][DBLP ] COLT, 1993, pp:101-110 [Conf ] Michael J. Kearns , Robert E. Schapire , Linda Sellie Toward Efficient Agnostic Learning. [Citation Graph (0, 0)][DBLP ] COLT, 1992, pp:341-352 [Conf ] Avrim Blum , Merrick L. Furst , Michael J. Kearns , Richard J. Lipton Cryptographic Primitives Based on Hard Learning Problems. [Citation Graph (0, 0)][DBLP ] CRYPTO, 1993, pp:278-291 [Conf ] Yoav Freund , Michael J. Kearns , Yishay Mansour , Dana Ron , Ronitt Rubinfeld , Robert E. Schapire Efficient Algorithms for Learning to Play Repeated Games Against Computationally Bounded Adversaries. [Citation Graph (0, 0)][DBLP ] FOCS, 1995, pp:332-341 [Conf ] Sally A. Goldman , Michael J. Kearns , Robert E. Schapire Exact Identification of Circuits Using Fixed Points of Amplification Functions (Extended Abstract) [Citation Graph (0, 0)][DBLP ] FOCS, 1990, pp:193-202 [Conf ] Michael J. Kearns Theoretical Issues in Probabilistic Artificial Intelligence. [Citation Graph (0, 0)][DBLP ] FOCS, 1998, pp:4- [Conf ] Michael J. Kearns , Robert E. Schapire Efficient Distribution-free Learning of Probabilistic Concepts (Extended Abstract) [Citation Graph (0, 0)][DBLP ] FOCS, 1990, pp:382-391 [Conf ] Thomas G. Dietterich , Michael J. Kearns , Yishay Mansour Applying the Waek Learning Framework to Understand and Improve C4.5. [Citation Graph (0, 0)][DBLP ] ICML, 1996, pp:96-104 [Conf ] Sham Kakade , Michael J. Kearns , John Langford Exploration in Metric State Spaces. [Citation Graph (0, 0)][DBLP ] ICML, 2003, pp:306-312 [Conf ] Michael J. Kearns , Yishay Mansour A Fast, Bottom-Up Decision Tree Pruning Algorithm with Near-Optimal Generalization. [Citation Graph (0, 0)][DBLP ] ICML, 1998, pp:269-277 [Conf ] Michael J. Kearns , Satinder P. Singh Near-Optimal Reinforcement Learning in Polynominal Time. [Citation Graph (0, 0)][DBLP ] ICML, 1998, pp:260-268 [Conf ] Kary Myers , Michael J. Kearns , Satinder P. Singh , Marilyn A. Walker A Boosting Approach to Topic Spotting on Subdialogues. [Citation Graph (0, 0)][DBLP ] ICML, 2000, pp:655-662 [Conf ] Michael J. Kearns , Daphne Koller Efficient Reinforcement Learning in Factored MDPs. [Citation Graph (0, 0)][DBLP ] IJCAI, 1999, pp:740-747 [Conf ] Michael J. Kearns , Yishay Mansour , Andrew Y. Ng A Sparse Sampling Algorithm for Near-Optimal Planning in Large Markov Decision Processes. [Citation Graph (0, 0)][DBLP ] IJCAI, 1999, pp:1324-1231 [Conf ] Michael J. Kearns Computational Game Theory and AI. [Citation Graph (0, 0)][DBLP ] KI/ÖGAI, 2001, pp:1- [Conf ] Koby Crammer , Michael S. Kearns , Jennifer Wortman Learning from Data of Variable Quality. [Citation Graph (0, 0)][DBLP ] NIPS, 2005, pp:- [Conf ] David Haussler , Michael J. Kearns , Manfred Opper , Robert E. Schapire Estimating Average-Case Learning Curves Using Bayesian, Statistical Physics and VC Dimension Methods. [Citation Graph (0, 0)][DBLP ] NIPS, 1991, pp:855-862 [Conf ] Charles Lee Isbell Jr. , Christian R. Shelton , Michael J. Kearns , Satinder P. Singh , Peter Stone Cobot: A Social Reinforcement Learning Agent. [Citation Graph (0, 0)][DBLP ] NIPS, 2001, pp:1393-1400 [Conf ] Michael J. Kearns A Bound on the Error of Cross Validation Using the Approximation and Estimation Rates, with Consequences for the Training-Test Split. [Citation Graph (0, 0)][DBLP ] NIPS, 1995, pp:183-189 [Conf ] Michael J. Kearns , Yishay Mansour , Andrew Y. Ng Approximate Planning in Large POMDPs via Reusable Trajectories. [Citation Graph (0, 0)][DBLP ] NIPS, 1999, pp:1001-1007 [Conf ] Michael J. Kearns , Luis E. Ortiz Algorithms for Interdependent Security Games. [Citation Graph (0, 0)][DBLP ] NIPS, 2003, pp:- [Conf ] Michael J. Kearns , Lawrence K. Saul Inference in Multilayer Networks via Large Deviation Bounds. [Citation Graph (0, 0)][DBLP ] NIPS, 1998, pp:260-266 [Conf ] Michael J. Kearns , Satinder P. Singh Finite-Sample Convergence Rates for Q-Learning and Indirect Algorithms. [Citation Graph (0, 0)][DBLP ] NIPS, 1998, pp:996-1002 [Conf ] Sham M. Kakade , Michael J. Kearns , Luis E. Ortiz , Robin Pemantle , Siddharth Suri Economic Properties of Social Networks. [Citation Graph (0, 0)][DBLP ] NIPS, 2004, pp:- [Conf ] Michael L. Littman , Michael J. Kearns , Satinder P. Singh An Efficient, Exact Algorithm for Solving Tree-Structured Graphical Games. [Citation Graph (0, 0)][DBLP ] NIPS, 2001, pp:817-823 [Conf ] Luis E. Ortiz , Michael J. Kearns Nash Propagation for Loopy Graphical Games. [Citation Graph (0, 0)][DBLP ] NIPS, 2002, pp:793-800 [Conf ] Satinder P. Singh , Michael J. Kearns , Diane J. Litman , Marilyn A. Walker Reinforcement Learning for Spoken Dialogue Systems. [Citation Graph (0, 0)][DBLP ] NIPS, 1999, pp:956-962 [Conf ] Michael J. Kearns , Leslie G. Valiant Cryptographic Limitations on Learning Boolean Formulae and Finite Automata. [Citation Graph (0, 0)][DBLP ] Machine Learning: From Theory to Applications, 1993, pp:29-49 [Conf ] Sham Kakade , Michael J. Kearns , John Langford , Luis E. Ortiz Correlated equilibria in graphical games. [Citation Graph (0, 0)][DBLP ] ACM Conference on Electronic Commerce, 2003, pp:42-47 [Conf ] Sham Kakade , Michael J. Kearns , Yishay Mansour , Luis E. Ortiz Competitive algorithms for VWAP and limit order trading. [Citation Graph (0, 0)][DBLP ] ACM Conference on Electronic Commerce, 2004, pp:189-198 [Conf ] Avrim Blum , Merrick L. Furst , Jeffrey C. Jackson , Michael J. Kearns , Yishay Mansour , Steven Rudich Weakly learning DNF and characterizing statistical query learning using Fourier analysis. [Citation Graph (0, 0)][DBLP ] STOC, 1994, pp:253-262 [Conf ] Yoav Freund , Michael J. Kearns , Dana Ron , Ronitt Rubinfeld , Robert E. Schapire , Linda Sellie Efficient learning of typical finite automata from random walks. [Citation Graph (0, 0)][DBLP ] STOC, 1993, pp:315-324 [Conf ] Michael J. Kearns Efficient noise-tolerant learning from statistical queries. [Citation Graph (0, 0)][DBLP ] STOC, 1993, pp:392-401 [Conf ] Michael J. Kearns , Ming Li Learning in the Presence of Malicious Errors (Extended Abstract) [Citation Graph (0, 0)][DBLP ] STOC, 1988, pp:267-280 [Conf ] Michael J. Kearns , Ming Li , Leonard Pitt , Leslie G. Valiant On the Learnability of Boolean Formulae [Citation Graph (0, 0)][DBLP ] STOC, 1987, pp:285-295 [Conf ] Michael J. Kearns , Yishay Mansour On the Boosting Ability of Top-Down Decision Tree Learning Algorithms. [Citation Graph (0, 0)][DBLP ] STOC, 1996, pp:459-468 [Conf ] Michael J. Kearns , Yishay Mansour , Dana Ron , Ronitt Rubinfeld , Robert E. Schapire , Linda Sellie On the learnability of discrete distributions. [Citation Graph (0, 0)][DBLP ] STOC, 1994, pp:273-282 [Conf ] Michael J. Kearns , Leslie G. Valiant Cryptographic Limitations on Learning Boolean Formulae and Finite Automata [Citation Graph (0, 0)][DBLP ] STOC, 1989, pp:433-444 [Conf ] Michael J. Kearns Structured interaction in game theory. [Citation Graph (0, 0)][DBLP ] TARK, 2003, pp:88- [Conf ] Michael J. Kearns , Michael L. Littman , Satinder P. Singh Graphical Models for Game Theory. [Citation Graph (0, 0)][DBLP ] UAI, 2001, pp:253-260 [Conf ] Michael J. Kearns , Yishay Mansour Efficient Nash Computation in Large Population Games with Bounded Influence. [Citation Graph (0, 0)][DBLP ] UAI, 2002, pp:259-266 [Conf ] Michael J. Kearns , Yishay Mansour Exact Inference of Hidden Structure from Sample Data in noisy-OR Networks. [Citation Graph (0, 0)][DBLP ] UAI, 1998, pp:304-310 [Conf ] Michael J. Kearns , Yishay Mansour , Andrew Y. Ng An Information-Theoretic Analysis of Hard and Soft Assignment Methods for Clustering. [Citation Graph (0, 0)][DBLP ] UAI, 1997, pp:282-293 [Conf ] Michael J. Kearns , Yishay Mansour , Satinder P. Singh Fast Planning in Stochastic Games. [Citation Graph (0, 0)][DBLP ] UAI, 2000, pp:309-316 [Conf ] Michael J. Kearns , Lawrence K. Saul Large Deviation Methods for Approximate Probabilistic Inference. [Citation Graph (0, 0)][DBLP ] UAI, 1998, pp:311-319 [Conf ] Satinder P. Singh , Michael J. Kearns , Yishay Mansour Nash Convergence of Gradient Dynamics in General-Sum Games. [Citation Graph (0, 0)][DBLP ] UAI, 2000, pp:541-548 [Conf ] Charles Lee Isbell Jr. , Michael J. Kearns , Satinder P. Singh , Christian R. Shelton , Peter Stone , David P. Kormann Cobot in LambdaMOO: An Adaptive Social Statistics Agent. [Citation Graph (0, 0)][DBLP ] Autonomous Agents and Multi-Agent Systems, 2006, v:13, n:3, pp:327-354 [Journal ] Michael J. Kearns , Luis E. Ortiz The Penn-Lehman Automated Trading Project. [Citation Graph (0, 0)][DBLP ] IEEE Intelligent Systems, 2003, v:18, n:6, pp:22-31 [Journal ] Andrzej Ehrenfeucht , David Haussler , Michael J. Kearns , Leslie G. Valiant A General Lower Bound on the Number of Examples Needed for Learning [Citation Graph (0, 0)][DBLP ] Inf. Comput., 1989, v:82, n:3, pp:247-261 [Journal ] Yoav Freund , Michael J. Kearns , Dana Ron , Ronitt Rubinfeld , Robert E. Schapire , Linda Sellie Efficient Learning of Typical Finite Automata from Random Walks. [Citation Graph (0, 0)][DBLP ] Inf. Comput., 1997, v:138, n:1, pp:23-48 [Journal ] Sally A. Goldman , Michael J. Kearns , Robert E. Schapire On the Sample Complexity of Weakly Learning [Citation Graph (0, 0)][DBLP ] Inf. Comput., 1995, v:117, n:2, pp:276-287 [Journal ] David Haussler , Michael J. Kearns , Nick Littlestone , Manfred K. Warmuth Equivalence of Models for Polynomial Learnability [Citation Graph (0, 0)][DBLP ] Inf. Comput., 1991, v:95, n:2, pp:129-161 [Journal ] Michael J. Kearns Efficient Noise-Tolerant Learning from Statistical Queries. [Citation Graph (0, 0)][DBLP ] J. ACM, 1998, v:45, n:6, pp:983-1006 [Journal ] Michael J. Kearns , Ming Li , Leslie G. Valiant Learning Boolean Formulas. [Citation Graph (0, 0)][DBLP ] J. ACM, 1994, v:41, n:6, pp:1298-1328 [Journal ] Michael J. Kearns , Leslie G. Valiant Cryptographic Limitations on Learning Boolean Formulae and Finite Automata. [Citation Graph (0, 0)][DBLP ] J. ACM, 1994, v:41, n:1, pp:67-95 [Journal ] Satinder P. Singh , Diane J. Litman , Michael J. Kearns , Marilyn A. Walker Optimizing Dialogue Management with Reinforcement Learning: Experiments with the NJFun System. [Citation Graph (0, 0)][DBLP ] J. Artif. Intell. Res. (JAIR), 2002, v:16, n:, pp:105-133 [Journal ] Peter Stone , Michael L. Littman , Satinder P. Singh , Michael J. Kearns ATTac-2000: An Adaptive Autonomous Bidding Agent. [Citation Graph (0, 0)][DBLP ] J. Artif. Intell. Res. (JAIR), 2001, v:15, n:, pp:189-206 [Journal ] Sally A. Goldman , Michael J. Kearns On the Complexity of Teaching. [Citation Graph (0, 0)][DBLP ] J. Comput. Syst. Sci., 1995, v:50, n:1, pp:20-31 [Journal ] Michael J. Kearns , Yishay Mansour On the Boosting Ability of Top-Down Decision Tree Learning Algorithms. [Citation Graph (0, 0)][DBLP ] J. Comput. Syst. Sci., 1999, v:58, n:1, pp:109-128 [Journal ] Michael J. Kearns , Dana Ron Testing Problems with Sublearning Sample Complexity. [Citation Graph (0, 0)][DBLP ] J. Comput. Syst. Sci., 2000, v:61, n:3, pp:428-456 [Journal ] Michael J. Kearns , Robert E. Schapire Efficient Distribution-Free Learning of Probabilistic Concepts. [Citation Graph (0, 0)][DBLP ] J. Comput. Syst. Sci., 1994, v:48, n:3, pp:464-497 [Journal ] David Haussler , Michael J. Kearns , Robert E. Schapire Bounds on the Sample Complexity of Bayesian Learning Using Information Theory and the VC Dimension. [Citation Graph (0, 0)][DBLP ] Machine Learning, 1994, v:14, n:1, pp:83-113 [Journal ] David Haussler , Michael J. Kearns , H. Sebastian Seung , Naftali Tishby Rigorous Learning Curve Bounds from Statistical Mechanics. [Citation Graph (0, 0)][DBLP ] Machine Learning, 1996, v:25, n:2-3, pp:195-236 [Journal ] Michael J. Kearns , Yishay Mansour , Andrew Y. Ng A Sparse Sampling Algorithm for Near-Optimal Planning in Large Markov Decision Processes. [Citation Graph (0, 0)][DBLP ] Machine Learning, 2002, v:49, n:2-3, pp:193-208 [Journal ] Michael J. Kearns , Yishay Mansour , Andrew Y. Ng , Dana Ron An Experimental and Theoretical Comparison of Model Selection Methods. [Citation Graph (0, 0)][DBLP ] Machine Learning, 1997, v:27, n:1, pp:7-50 [Journal ] Michael J. Kearns , Satinder P. Singh Near-Optimal Reinforcement Learning in Polynomial Time. [Citation Graph (0, 0)][DBLP ] Machine Learning, 2002, v:49, n:2-3, pp:209-232 [Journal ] Michael J. Kearns , H. Sebastian Seung Learning from a Population of Hypotheses. [Citation Graph (0, 0)][DBLP ] Machine Learning, 1995, v:18, n:2-3, pp:255-276 [Journal ] Michael J. Kearns , Robert E. Schapire , Linda Sellie Toward Efficient Agnostic Learning. [Citation Graph (0, 0)][DBLP ] Machine Learning, 1994, v:17, n:2-3, pp:115-141 [Journal ] Michael J. Kearns , Dana Ron Algorithmic Stability and Sanity-Check Bounds for Leave-One-Out Cross-Validation. [Citation Graph (0, 0)][DBLP ] Neural Computation, 1999, v:11, n:6, pp:1427-1453 [Journal ] Sally A. Goldman , Michael J. Kearns , Robert E. Schapire Exact Identification of Read-Once Formulas Using Fixed Points of Amplification Functions. [Citation Graph (0, 0)][DBLP ] SIAM J. Comput., 1993, v:22, n:4, pp:705-726 [Journal ] Michael J. Kearns , Ming Li Learning in the Presence of Malicious Errors. [Citation Graph (0, 0)][DBLP ] SIAM J. Comput., 1993, v:22, n:4, pp:807-837 [Journal ] Eyal Even-Dar , Michael Kearns , Yishay Mansour , Jennifer Wortman Regret to the Best vs. Regret to the Average. [Citation Graph (0, 0)][DBLP ] COLT, 2007, pp:233-247 [Conf ] Eyal Even-Dar , Michael Kearns A Small World Threshold for Economic Network Formation. [Citation Graph (0, 0)][DBLP ] NIPS, 2006, pp:385-392 [Conf ] Koby Crammer , Michael Kearns , Jennifer Wortman Learning from Multiple Sources. [Citation Graph (0, 0)][DBLP ] NIPS, 2006, pp:321-328 [Conf ] Eyal Even-Dar , Michael Kearns , Siddharth Suri A network formation game for bipartite exchange economies. [Citation Graph (0, 0)][DBLP ] SODA, 2007, pp:697-706 [Conf ] Sponsored Search with Contexts. [Citation Graph (, )][DBLP ] Search in 0.011secs, Finished in 0.015secs