The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

J. Mark Keil: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. J. Mark Keil
    Decomposing a Polygon into Simpler Components. [Citation Graph (1, 0)][DBLP]
    SIAM J. Comput., 1985, v:14, n:4, pp:799-817 [Journal]
  2. J. Mark Keil, Jack Snoeyink
    On the time bound for convex decomposition of simple polygons. [Citation Graph (0, 0)][DBLP]
    CCCG, 1998, pp:- [Conf]
  3. J. Mark Keil, Tzvetalin S. Vassilev
    An algorithm for the MaxMin area triangulation of a convex polygon. [Citation Graph (0, 0)][DBLP]
    CCCG, 2003, pp:145-149 [Conf]
  4. Michael J. Spriggs, J. Mark Keil
    Minimum spanning trees on polyhedra. [Citation Graph (0, 0)][DBLP]
    CCCG, 1999, pp:- [Conf]
  5. Michael J. Spriggs, J. Mark Keil, Sergei Bespamyatnikh, Michael Segal, Jack Snoeyink
    Approximating the geometric minimum-diameter spanning tree. [Citation Graph (0, 0)][DBLP]
    CCCG, 2003, pp:39-42 [Conf]
  6. Tetsuo Asano, Binay K. Bhattacharya, Mark Keil, F. Frances Yao
    Clustering Algorithms Based on Minimum and Maximum Spanning Trees. [Citation Graph (0, 0)][DBLP]
    Symposium on Computational Geometry, 1988, pp:252-257 [Conf]
  7. Patrice Belleville, J. Mark Keil, Michael McAllister, Jack Snoeyink
    On Computing Edges That Are In All Minimum-Weight Triangulations. [Citation Graph (0, 0)][DBLP]
    Symposium on Computational Geometry, 1996, pp:0-7 [Conf]
  8. J. Mark Keil
    Minimally Covering a Horizontally Convex Orthogonal Polygon. [Citation Graph (0, 0)][DBLP]
    Symposium on Computational Geometry, 1986, pp:43-51 [Conf]
  9. Sergei Bespamyatnikh, Binay K. Bhattacharya, J. Mark Keil, David G. Kirkpatrick, Michael Segal
    Efficient Algorithms for Centers and Medians in Interval and Circular-Arc Graphs. [Citation Graph (0, 0)][DBLP]
    ESA, 2000, pp:100-111 [Conf]
  10. Mark D. Watson, J. Mark Keil
    Routing Properties of the Localized Delaunay Triangulation over Heterogeneous Ad-Hoc Wireless Networks. [Citation Graph (0, 0)][DBLP]
    ICCSA (1), 2006, pp:121-130 [Conf]
  11. J. Mark Keil
    Approximating the Complete Euclidean Graph. [Citation Graph (0, 0)][DBLP]
    SWAT, 1988, pp:208-213 [Conf]
  12. J. Mark Keil, Carl A. Gutwin
    The Delauney Triangulation Closely Approximates the Complete Euclidean Graph. [Citation Graph (0, 0)][DBLP]
    WADS, 1989, pp:47-56 [Conf]
  13. Michael J. Spriggs, J. Mark Keil, Sergei Bespamyatnikh, Michael Segal, Jack Snoeyink
    Computing a (1+epsilon)-Approximate Geometric Minimum-Diameter Spanning Tree. [Citation Graph (0, 0)][DBLP]
    Algorithmica, 2004, v:38, n:4, pp:577-589 [Journal]
  14. J. Mark Keil
    Computing a Subgraph of the Minimum Weight Triangulation. [Citation Graph (0, 0)][DBLP]
    Comput. Geom., 1994, v:4, n:, pp:18-26 [Journal]
  15. J. Mark Keil, Tzvetalin S. Vassilev
    Algorithms for optimal area triangulations of a convex polygon. [Citation Graph (0, 0)][DBLP]
    Comput. Geom., 2006, v:35, n:3, pp:173-187 [Journal]
  16. J. Mark Keil
    The Complexity of Domination Problems in Circle Graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 1993, v:42, n:1, pp:51-63 [Journal]
  17. J. Mark Keil, Patrice Belleville
    Dominating the complements of bounded tolerance graphs and the complements of trapezoid graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2004, v:140, n:1-3, pp:73-89 [Journal]
  18. J. Mark Keil, Lorna Stewart
    Approximating the minimum clique cover and other hard problems in subtree filament graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2006, v:154, n:14, pp:1983-1995 [Journal]
  19. Matthew Dickerson, J. Mark Keil, Mark H. Montague
    A Large Subgraph of the Minimum Weight Triangulation. [Citation Graph (0, 0)][DBLP]
    Discrete & Computational Geometry, 1997, v:18, n:3, pp:289-304 [Journal]
  20. J. Mark Keil, Carl A. Gutwin
    Classes of Graphs Which Approximate the Complete Euclidean Graph. [Citation Graph (0, 0)][DBLP]
    Discrete & Computational Geometry, 1992, v:7, n:, pp:13-28 [Journal]
  21. Leizhen Cai, J. Mark Keil
    Computing Visibility Information in an Inaccurate Simple Polygon. [Citation Graph (0, 0)][DBLP]
    Int. J. Comput. Geometry Appl., 1997, v:7, n:6, pp:515-538 [Journal]
  22. J. Mark Keil
    Covering Orthogonal Polygons with Non-Piercing Rectangles. [Citation Graph (0, 0)][DBLP]
    Int. J. Comput. Geometry Appl., 1997, v:7, n:5, pp:473-484 [Journal]
  23. J. Mark Keil, Jack Snoeyink
    On the Time Bound for Convex Decomposition of Simple Polygons. [Citation Graph (0, 0)][DBLP]
    Int. J. Comput. Geometry Appl., 2002, v:12, n:3, pp:181-192 [Journal]
  24. J. Mark Keil
    Finding Hamiltonian Circuits in Interval Graphs. [Citation Graph (0, 0)][DBLP]
    Inf. Process. Lett., 1985, v:20, n:4, pp:201-206 [Journal]
  25. J. Mark Keil
    Total Domination in Interval Graphs. [Citation Graph (0, 0)][DBLP]
    Inf. Process. Lett., 1986, v:22, n:4, pp:171-174 [Journal]
  26. Michael J. Spriggs, J. Mark Keil
    A new bound for map labeling with uniform circle pairs. [Citation Graph (0, 0)][DBLP]
    Inf. Process. Lett., 2002, v:81, n:1, pp:47-53 [Journal]
  27. Martin Farber, J. Mark Keil
    Domination in Permutation Graphs. [Citation Graph (0, 0)][DBLP]
    J. Algorithms, 1985, v:6, n:3, pp:309-321 [Journal]
  28. Leizhen Cai, J. Mark Keil
    Degree-Bounded Spanners. [Citation Graph (0, 0)][DBLP]
    Parallel Processing Letters, 1993, v:3, n:, pp:457-468 [Journal]
  29. Derek G. Corneil, J. Mark Keil
    A note on a conjecture by Gavril on clique separable graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1983, v:46, n:3, pp:317-318 [Journal]

  30. The Bichromatic Rectangle Problem in High Dimensions. [Citation Graph (, )][DBLP]


  31. The relative neighbourhood graph is a part of every 30°-triangulation. [Citation Graph (, )][DBLP]


  32. The Mono- and Bichromatic Empty Rectangle and Square Problems in All Dimensions. [Citation Graph (, )][DBLP]


  33. On the Stretch Factor of the Constrained Delaunay Triangulation. [Citation Graph (, )][DBLP]


  34. An optimal algorithm for finding dominating cycles in circular-arc graphs. [Citation Graph (, )][DBLP]


  35. Polynomial algorithms for restricted Euclidean p-centre problems. [Citation Graph (, )][DBLP]


Search in 0.004secs, Finished in 0.005secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002